Управление нагрузкой 220 вольт БЕЗ реле! smart-chip

Управление симистором

Довольно часто в комментариях задаются одни и те же вопросы, суть которых сводится к отсчету времени. Обычный ответ — юзай таймер! Примеры уже есть некоторых статьях, но возможно не сделаны нужные акценты. И чтобы пример был с каким то смыслом, заодно рассмотрим принцип управления симистором.

Пример очень утрированный, но надеюсь он поможет понять общую суть. Пофантазируем и представим себе обычный водопроводный кран, который может крутиться влево или вправо, в зависимости от этого будет литься горячая и холодная вода. Когда кран посередине (в нуле) вода не течет. Что будет, если крутануть кран влево и вправо по синусоидальному закону?

В общем то, ничего особенного �� Просто в банку плюхнется некоторое количество воды. Сколько? Условимся, что этот объем будет пропорционален площади фигуры ограниченной синусом, проще говоря, если посчитать площадь красного горбика (горячей воды) и синего горбика (холодной воды), и сложить их, то получим наши литры теплой воды.

Теперь повторим еще раз тот же эксперимент, но в момент открывания крана, на долю секунды будем затыкать пальцем кран, так чтобы вода не текла.

Очевидно, что воды в банку плюхнется меньше, так как какую то часть времени вода не текла. Если посчитать площадь не закрашенной части синусоиды, то ровно на столько воды будет меньше.

Симистор является неким аналогом водопроводного крана, а аналогом количества воды в банке за единицу времени, является мощность, которая передается на потребитель(лампочка, нагреватель и т.п.). Т.е. если мы воткнем лампочку напрямую в сеть то, это будет 100% яркости лампы, если мы воткнем лампу через симистор и будем открывать его с задержкой, то лампочка будет светить меньше. Чем больше задержка тем тусклее будет свет.

Симистор имеет три электрода, два из них обычно называются условный анод/катод и один управляющий. Главная особенность в том, что если на условном аноде и катоде не нулевое напряжение, то если подать на его управляющий электрод напряжение, он откроется, но закрыть его воздействием на управляющий электрод уже будет нельзя. Только когда напряжение на аноде и катоде станет равным нулю, тогда он закроется. Таким образом для управления нагрузкой постоянного тока, он не подходит, зато с переменный током нет проблем, так как напряжение сети проходит через ноль 100 раз за секунду.

Рассмотрим полпериода синусоиды 10мс, того самого напряжения что у нас в розетке. Представим все пройденное напряжение за 10мс, как 100% мощности. Если нам нужно зажечь лампочку на 50% мощности мы должны отловить момент, когда сетевое напряжение пересекает 0 точку, в этом случае симистор гарантированно выключен, после этого ждем 50% времени от 10мс(т.е. 5 мс все выключено) и в оставшиеся 5мс включаем симистор. Когда он дойдет до следующего нуля, то он сам выключится и можно будет повторить цикл.

Вопрос первый как отловить пересечение нуля (zero cross)? Самый простой способ, это апнот AVR182 — подавать сетевое напряжение через мегаомный резистор на вход внешнего прерывания. Некоторые рекомендуют поставить параллельно входу кондер на 10пФ.

Идея заключается в том, что внутренние диоды ножки ограничивают напряжение, поэтому в моменты положительной полуволны синусоиды у нас будет логическая единица, а когда отрицательная, то напряжение не опустится ниже -0.5В, что соответствует логическому нулю. Таким образом, когда включаем внешнее прерывание по любому изменению фронта, получаем ноль. По правильному, хорошо сделать развязку от сети, например через трансформатор или оптрон. Но как реализовывать дело личное.

Следующий момент, симистор отпирается отрицательным напряжением на управляющем электроде, поэтому есть ширпотребное решение использовать оптроны. Типовую схему можно найти в даташите, т.е. достаточно в моменты прохождения напряжения через ноль, подавать импульсы на Rin(VCC).

Только нужно смотреть внимательно, вышеописанный метод называется фазовым управлением, для него нужны оптроны Non-Zero Crossing, ибо существуют со встроенной Zero Crossing схемой, у них принцип управления симистором отличается. Там используется пропуск периодов, т.е. подаешь импульс, оптрон откроется только в момент следующего прохождения через ноль.

И самое важная часть повествования, расчет работы таймера. Первое что нужно понимать, таймер зависит от частоты кварца/генератора, я обычно юзаю 8МГц. Далее идет выбор предделителя, например для меги8 таймера2, есть такие варианты 1,8,16,32,64,128,256,1024. Обратите внимание, что для разных таймеров количество делителей будет разным. Не парим мозг, открываем CodeWizard и видим все доступные частоты, т.е. это и есть выбор предделителя.

При этом 1 тик таймера будет равен:
1/ 8 000 000 = 0,000000125 сек
1/ 1 000 000 = 0,000001
1/ 250 000 = 0,000004
1/ 125 000 = 0,000008
1/ 62 500 = 0,000016
1/ 31 250 = 0,000032
1/ 7 813 = 0,000128

Все эти делители включаются в регистре TCCR, как? Это тупо комбинация битов CS22, CS21, CS20.

Для делителя на 1024

TCCR2= (1 0) && (temp_value 10) //если много то другой < PORTB.6 = 1; >TIMSK=(0 #include // Timer2 output compare interrupt service routine interrupt [TIM2_COMP] void timer2_comp_isr(void) < //подаем импульс на симистор PORTD.7 = 1; delay_us(500); PORTD.7 = 0; TCCR2 = 0; >// External Interrupt 0 service routine interrupt [EXT_INT0] void ext_int0_isr(void) < TCNT2=0x00; //обнуляем таймер TCCR2=(1 2

Я понимаю, что внешним прерыванием Вы отлавливаете переход через ноль, и отсчитываете таймером время после этого перехода — и если это время совпадает с регистром сравнения, то подаёте импульс открытия симистора — и сразу его закрываете, обнуляете таймер и выключаете его, и так далеее….
а вот мне интересно как менять значение в регистре OCR — тупо присвоить переменную и менять эту переменную.? А получится?

062-Как подключить к микроконтроллеру нагрузку?

В следующих статьях будут устройства, которые должны управлять внешней нагрузкой. Под внешней нагрузкой я понимаю все, что прицеплено к ножкам микроконтроллера – светодиоды, лампочки, реле, двигатели, исполнительные устройства … ну Вы поняли. И как бы не была заезжена данная тема, но, чтобы избежать повторений в следующих статьях, я все-же рискну быть не оригинальным — Вы уж меня простите :). Я кратенько, в рекомендательной форме, покажу наиболее распространенные способы подключения нагрузки (если Вы что-то захотите добавить – буду только рад).
Сразу договоримся, что речь идет о цифровом сигнале (микроконтроллер все-таки цифровое устройство) и не будем отходить от общей логики: 1-включено, -выключено. Начнем.

1 НАГРУЗКА ПОСТОЯННОГО ТОКА.
Нагрузкой постоянного тока являются: светодиоды, лампы, реле, двигатели постоянного тока, сервоприводы, различные исполнительные устройства и т.д. Такая нагрузка наиболее просто (и наиболее часто) подключается к микроконтроллеру.

1.1 Подключение нагрузки через резистор.
Самый простой и, наверно, чаще всего используемый способ, если речь идет о светодиодах.

Резистор нужен для того, чтобы ограничить ток протекающий, через ножку микроконтроллера до допустимых 20мА. Его называют балластным или гасящим. Примерно рассчитать величину резистора можно зная сопротивление нагрузки Rн.

Rгасящий = (5v / 0.02A) – Rн = 250 – Rн [Om]

Как видно, даже в самом худшем случае, когда сопротивление нагрузки равно нулю достаточно 250 Ом для того, что бы ток не превысил 20мА. А значит, если неохота чего-то там считать — ставьте 300 Ом и Вы защитите порт от перегрузки. Достоинство способа очевидно – простота.

1.2 Подключение нагрузки при помощи биполярного транзистора.
Если так случилась, что Ваша нагрузка потребляет более 20мА, то, ясное дело, резистор тут не поможет. Нужно как-то увеличить (читай усилить) ток. Что применяют для усиления сигнала? Правильно. Транзистор!

Для усиления удобней применять n-p-n транзистор, включенный по схеме ОЭ. При таком способе можно подключать нагрузку с большим напряжением питания, чем питание микроконтроллера. Резистор на базе – ограничительный. Может варьироваться в широких пределах (1-10 кОм), в любом случае транзистор будет работать в режиме насыщения. Транзистор может быть любой n-p-n транзистор. Коэффициент усиления, практически не имеет значения. Выбирается транзистор по току коллектора (нужный нам ток) и напряжению коллектор-эмиттер (напряжение которым запитывается нагрузка). Еще имеет значение рассеиваемая мощность — чтоб не перегрелся.

Читайте также:  Шкода октавия при покупке на что обратить внимание при

Из распространенных и легко доступных можно заюзать BC546, BC547, BC548, BC549 с любыми буквами (100мА), да и тот-же КТ315 сойдет (это у кого со старых запасов остались).
BC547.pdf (10344 Загрузки)

1.3 Подключение нагрузки при помощи полевого транзистора.
Ну а если ток нашей нагрузки лежит в пределах десятка ампер? Биполярный транзистор применить не получиться, так как токи управления таким транзистором велики и скорей всего превысят 20мА. Выходом может служить или составной транзистор (читать ниже) или полевой транзистор (он же МОП, он же MOSFET). Полевой транзистор просто замечательная штука, так как он управляется не током, а потенциалом на затворе. Это делает возможным микроскопическим током на затворе управлять большими токами нагрузки.

Для нас подойдет любой n-канальный полевой транзистор. Выбираем, как и биполярный, по току, напряжению и рассеиваемой мощности.

При включении полевого транзистора нужно учесть ряд моментов:
— так как затвор, фактически, является конденсатором, то в моменты переключения транзистора через него текут большие токи (кратковременно). Для того чтобы ограничить эти токи в затвор ставиться ограничивающий резистор.
— транзистор управляется малыми токами и если выход микроконтроллера, к которому подключен затвор, окажется в высокоимпедансном Z-состоянии полевик начнет открываться-закрываться непредсказуемо, вылавливая помехи. Для устранения такого поведения ножку микроконтроллера нужно «прижать» к земле резистором порядка 10кОм.
У полевого транзистора на фоне всех его положительных качеств есть недостаток. Платой за управление малым током является медлительность транзистора. ШИМ, конечно, он потянет, но на превышение допустимой частоты он Вам ответит перегревом.

Для применения можно порекомендовать мощные транзисторы IRF630, IRF640. Их часто используют и поэтому их легко достать.
IRF640.pdf (17402 Загрузки)

1.4 Подключение нагрузки при помощи составного транзистора Дарлингтона.
Альтернативой применения полевого транзистора при сильноточной нагрузке является применение составного транзистора Дарлингтона. Внешне это такой-же транзистор, как скажем, биполярный, но внутри для управления мощным выходным транзистором используется предварительная усилительная схема. Это позволяет малыми токами управлять мощной нагрузкой. Применение транзистора Дарлингтона не так интересно, как применение сборки таких транзисторов. Есть такая замечательная микросхема как ULN2003. В ее составе аж 7 транзисторов Дарлингтона, причем каждый можно нагрузить током до 500мА, причем их можно включать параллельно для увеличения тока.

Микросхема очень легко подключается к микроконтроллеру (просто ножка к ножке) имеет удобную разводку (вход напротив выхода) и не требует дополнительной обвязки. В результате такой удачной конструкции ULN2003 широко используется в радиолюбительской практике. Соответственно достать ее не составит труда.
ULN2003.pdf (Одна Загрузка)

2 НАГРУЗКА ПЕРЕМЕННОГО ТОКА.
Если Вам нужно управлять устройствами переменного тока (чаще всего 220v), то тут все сложней, но не на много.

2.1 Подключение нагрузки при помощи реле.
Самым простым и, наверное, самым надежным есть подключение при помощи реле. Катушка реле, сама собой, является сильноточной нагрузкой, поэтому напрямую к микроконтроллеру ее не включишь. Реле можно подключить через транзистор полевой или биполярный или через туже ULN2003, если нужно несколько каналов.

Достоинства такого способа большой коммутируемый ток (зависит от выбранного реле), гальваническая развязка. Недостатки: ограниченная скорость/частота включения и механический износ деталей.
Что-то рекомендовать для применения не имеет смысла — реле много, выбирайте по нужным параметрам и цене.

2.2 Подключение нагрузки при помощи симистора (триака).
Если нужно управлять мощной нагрузкой переменного тока а особенно если нужно управлять мощностью выдаваемой на нагрузку (димеры), то Вам просто не обойтись без применения симистора (или триака). Симистор открывается коротким импульсом тока через управляющий электрод (причем как для отрицательной, так и для положительной полуволны напряжения). Закрывается симистор сам, в момент отсутствия напряжения на нем (при переходе напряжения через ноль). Вот тут начинаются сложности. Микроконтроллер должен контролировать момент перехода через ноль напряжения и в точно определенный момент подавать импульс для открытия симистора — это постоянная занятость контроллера. Еще одна сложность это отсутствие гальванической развязки у симистора. Приходится ее делать на отдельных элементах усложняя схему.


Хотя современные симисторы управляются довольно малым током и их можно подключить напрямую (через ограничительный резистор) к микроконтроллеру, из соображений безопасности приходится их включать через оптические развязывающие приборы. Причем это касается не только цепей управления симистором, но и цепей контроля нуля.

Довольно неоднозначный способ подключения нагрузки. Так как с одной стороны требует активного участия микроконтроллера и относительно сложного схемотехнического решения. С другой стороны позволяет очень гибко манипулировать нагрузкой. Еще один недостаток применения симисторов — большое количество цифрового шума, создаваемого при их работе — нужны цепи подавления.

Симисторы довольно широко используются, а в некоторых областях просто незаменимы, поэтому достать их не составляет каких либо проблем. Очень часто в радиолюбительстве применяют симисторы типа BT138.
BT138.pdf (6454 Загрузки)

2.3 Подключение нагрузки при помощи твердотельного реле.
С недавних пор у радиолюбителей появилась очень замечательная штука — твердотельные реле. Представляют они из себя оптические приборы (еще их называют оптореле), с одной стороны, в общем случае, стоит светодиод, а с другой полевой транзистор со светочувствительным затвором. Управляется эта штука малым током, а манипулировать может значительной нагрузкой.

Подключать твердотельное реле к микроконтроллеру очень просто — как светодиод — через резистор.
Достоинства налицо: малые размеры, отсутствие механического износа, возможность манипулировать большим током и напряжением и самое главное оптическая развязка от опасного напряжения. Нагрузка может быть как постоянного, так и переменного тока в зависимости от конструкции реле. Из недостатков следует отметить относительную медлительность (чаще всего для коммутации используется полевик) и довольно значительную стоимость реле.

Если не гнаться за завышенными характеристиками можно подобрать себе прибор по приемлемой цене. Например, реле CPC1030N управляется током от 2мА, при этом способно коммутировать нагрузку переменного и постоянного тока 120мА и 350v (очень полезная для радиолюбителей вещь!)
CPC1030N.pdf (Одна Загрузка)

062-Как подключить к микроконтроллеру нагрузку? : 229 комментариев

  1. kamaz6141 29.04.2015

Да, он. Спасибо за разъяснение, я просто думал что он рассчитывается как-то по другому из за ёмкости) а не как токоограничивающий. В основном везде пишут якобы 50-150 Ом ставить)

Вопросы в тему))
1. К МК через резистор 3к и тр-р КТ917 (ОЭ) была подключена нагрузка (обмотка) в коллектор. Нагрузка на 12В. Управление по импульсу на выходе МК. Схема не заработала, сгорел порт МК и пришлось поставить вместо обмотки реле на 5В по управлению, а на контакты — нагрузку коммутировал на 12В. Почему не заработала первая схема и почему сгорел порт?
2. В литературе показано, что нагрузки подключают в сток транзисторов MOSFET независимо от типа канала. В модификации http://www.forum.getchip.net/viewtopic.php?f=24&t=495&sid=d75b21e0a6fe8fecd31e2e764d51beac нагрузка включена в исток. Хотя считаю, что такие активные нагрузки как усилитель, лучше коммутировать по +, как сделал автор, а не по земле.
2.1. Я пробовал включить усилитель TDA в исток по схеме на одном IRF630, но усилитель не заработал, т.к. с потенциалом на ноге Vcc творилось непонятное, значение было ни как не Vcc.
2.2. Почему автор включил усилитель в исток, а не использовал p-канальный транзистор с включением нагрузки в сток?

1 через резистор 3кОм 12 вольт можно подключать смело к ножке МК и порту ничего не станется (12/3000=0.004А при допустимых 0.02А). Причина перегорания порта, скорей всего, в индуктивной нагрузке, на которой создалось значительное ЭДС самоиндукции, ток от которого сжег и транзистор и порт МК. В случае подключения индуктивных нагрузок обязательно применение защитного диода (например, как в п.2.1).

2 по модификации не могу ничего сказать, так как она не моя.

@GetChiper
Евгений,
1. в том то и дело, что транзистор выжил, а сгорел только порт. Нужен ли теперь шунтирующий (защитный) диод на индуктивную нагрузку, которая подключается к +12В и GND с помощью реле для стабилизации (защиты) этого самого источника +12В?
2. Можно ли подключать нагрузку в исток полевых транзисторов?

Читайте также:  Предохранители и реле ВАЗ 2114, 2115, 2113 расшифровка, расположение

1 в таком случае я не знаю причину перегорания порта. Защитный диод нужен в любом случае на индуктивной нагрузке (желательно еще и шотки).
2 можно нагрузку включать куда угодно. есть разные способы включения (как и в биполярном транзисторе) https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D0%B5%D0%B2%D0%BE%D0%B9_%D1%82%D1%80%D0%B0%D0%BD%D0%B7%D0%B8%D1%81%D1%82%D0%BE%D1%80

@GetChiper
Евгений, огромное спасибо!

А не задействованые входа ULN2003 нужно соединить с землёй? (например у меня остались 1-2 лишних)

Управление нагрузкой 220 вольт БЕЗ реле! 56

При автоматизации дома или квартиры необходимо управлять электрическими приборами работающими от напряжения 220 вольт. К сожалению контроллер arduino не может коммутировать такое большое напряжение на прямую. Необходим посредник. Первое что приходит на ум — РЕЛЕ.

У данного способа есть и плюсы и минусы. К плюсам можно отнести гальваническую развязку, возможность коммутировать все, что душе угодно (постоянный или переменный ток, любое напряжение до 250 вольт)

Минусы — дребезг контактов и щёлкает. Не такой большой минус, но он есть.

Как я не раз уже говорил: “Главное — это семья!” и если кому-то из близких не комфортно, необходимо постараться исправить.

После заявления родных о том, что “что-то там щёлкает и пугает…” решил собрать полупроводниковый ключ переменного напряжения. На просторах интернета не составило труда найти подробное описание и схему данного устройства.

Главные действующие герои ключа переменного напряжения — симистор и оптопара.

Симистор сам по себе уже является ключом переменного напряжения, но для управления симистором мы будем использовать оптопару, для того что бы обеспечить гальваническую развязку.

Рассматривая различные варианты я решил взять оптопару MOC3063. Дело в том, что она с детектором перехода нуля коммутируемого напряжения. Другими словами симистор будет открываться и закрываться в тот момент когда синусоида проходит через ноль. Данное свойство позволит продлить жизнь коммутируемым приборам…

Но хватит ходить вокруг да около.

Исходя из своих потребностей решил делать двух канальный ключ.

скачать PDF или в формате SprintLayout6 скачать

скачать программу для редактирования печатных плат SprintLayout6

Изготовил плату старым добрым способом «лазерного утюга» (ЛУТ). Только вместо утюга был использован ламинатор.

Стоимость деталей:

  1. оптопара MOC3063 — 38 руб. х2 шт.
  2. симистор BT138-600 — 30 руб. х2 шт.
  3. резисторы 6 шт. по рублю.
  4. кусок стеклотекстолита фольгированного — бесплатно (ориентировочно 10-15 руб.)
  5. клемники — можно считать бесплатными т.к. уже давно купил их 100500 штук.
  6. хлорное железо, припой и паяльник не считаем.

Итого около 150 руб.

Плюсы:

  1. полезно для коммутируемых устройств
  2. гальваническая развязка
  3. БЕСШУМНО!

Минусы:

  1. только переменное напряжение

Фото того, что получилось:

Поделиться ссылкой:

  • Нажмите, чтобы поделиться на Twitter (Открывается в новом окне)
  • Нажмите здесь, чтобы поделиться контентом на Facebook. (Открывается в новом окне)

Понравилось это:

Похожее

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

56 мыслей про “ Управление нагрузкой 220 вольт БЕЗ реле! ”

Доброе время суток, Взял за основу эту схему.
В релейном режиме работает отлично
А вот в ШИМ ни как не хочет, и фазу менял на входе и лампу сведодиодную подключал, ни как
Есть мысль, что ни так делаю?
Управляю от esp8266 Wemos d1 mini

Здравствуйте, автор! Объясните пожалуйста такой момент. По даташиту на BT138-600 максимально допустимое напряжение управляющего электрода (Ugm) равно 5В. А в вашей схеме на управляющий электрод симистра BT138-600 через резистор 200 Ом и оптосимистор MOC3063 подаётся напряжение питающей сети 220В. Как такое возможно? Или я что-то недопонимаю?

Добрый день!
А есть ли схема управления нагрузкой 220в от кнопки, но чтоб схема питалась от тех же 220 вольт? Т.е. вход 220в, вход под кнопку с гальванической развязкой и один выход под нагрузку?
Без доп. питания?
Спасибо!

Если поменять МОС 3063 на МОС3041 элементная схема изменится? И еще, скачала схему, но почему то она не открывается в моем 6-м спринте.

Имею ввиду диммировать можно напряжение? через MOC3063, у него же вроде есть детектор нуля и не нужно ставить дополнительно что-то типа PC814. Если я правильно понимаю.

Евгений, Добрый день! О каком ШИМ Вы спрашиваете.

Ответьте пожалуйста, будет ли работать ШИМ от 3-х вольтовой логики?

У меня стоят по 0,25 Вт. Но R2 и R3 желательно мощнее.

Автор, подскажи, какой мощности резюки?

Можно, только у еспшки на выходе 3,3 вольта, но я думаю что работать будет.

Здравствуйте подскажите можно использовать для esp?

А вы телевизор или магнитофон пробовали включать?

Замерял 12 ампер не каждом тенне.

Здравствуйте
Я затеял идею о контроллере сауны. Осталось решить вопрос чем включать тенны печи. Пока щелкает большое реле. Но действует на нервы и долго ето реле не проживёт. Попробывал семистором bta 24 600 b но греется очень сильно. Даже с мощным радиатором. Пальцы можно обжечь.

Не подскажите какой семистор лучше выбрать. Нагрузка 3 х 3000 ватт. Три тенна по три киловатта на 220 вольт.

Заранее большое спасибо

Хорошая схемка, сохраню себе, добавил бы только контроль положения симистора

Круто. А от ШИМ сигнала схема работать будет?

Здравствуйти!это действительно 500 кОм сопротивление в цепи 1 и 3 вывода симистора?а то чтото не работает….

Схема от термопары работать не будет.
Схема работает от логических «0» и «1» (логика 5В). Термопара из себя, как правило, представляет термосопративление. Т.е для снятия показаний и работы схемы нужна дополнительная обвязка..

Здравствуйте. а будет эта схема работать от сигнала термопары?

Да конечно, какая разница откуда придёт управляющий сигнал? Хоть банальную кнопку поставьте или концевик какой-нибудь…

А! Ну хорошо! Без каких нить переделок пойдет к PIR датчику, который выдает лог +5 на событие, только R1 подобрать на ток 5ма? так ведь?))

Здравствуйте! Я только начинаю разбираться в данной сфере, прошу помощи. В приведенной схеме используется MOC3063, такую штуку я у себя в регионе достать не могу (выписал через интернет), но у меня есть PC817. Можно-ли с помощью данной оптопары организовать такую схему? Если можно (нет), то расскажите, пожалуйста, мне для обучения не хватает простого человеческого объяснения.

Твердотельное реле не устраивает ценой прежде всего, а обычное щёлкает и подгорает, поэтому и ищу альтернативные варианты. Подскажите куда поставить фильтр или как развесим на плате?

Я думаю, что можно, но теплый пол это ещё и не слабая индуктивный нагрузка. Нужно в схему добавить RC фильтр. А чем не устраивает классический способ управления реле?

Здравствуйте. Подскажите можно ли с этой схемой использовать BTA25? Нужно управлять тёплыми полами через ардуину и эту платку! Будет работать?

Добрый день. Как я уже писал в этой статье, нашел схему на просторах интернета. По информации от туда же резисторы R2 и R3 рассчитаны на 1Вт. Хочу заметить, что я делал на smd компанентах «1206» которые на 0,25 Вт и все работало. Резисторы не грелись.

Уважаемый автор,поясни пожалуйста. на какой максимальный ток расчитаны резисторы r2,r3? хочу применить SMD компоненты.

Здравствуйте, хочу поставить такую схемку для управления насосом подкачки воды в системе отопления, управляющий сигнал будет браться от счетчика воды и посылать его будет датчик Холла (плохо то что сигнал импульсный, частота зависит от скорости протекания воды, но думаю герц под 30-50, то есть когда мимо датчика сигнал проходит магнит сигнал есть, магнит ушел-сигнал пропал).
Вопросы: 1. Пока на вход оптопары подается сигнал-симистор открыт, сигнал пропал симистор закрылся?
2. Надо с точностью до наоборот, сигнал идет симистор закрылся (насос не работает), сигнала нет симистор открыт (насос работает).
3. Что делать если сигнал прерывистый

Читайте также:  Полироль для пластика автомобиля - виды, инструкция применения

А почему не попробовать использовать тиристор который написан в статье? У 138 и 139 разница по току управления 0,025 против 0,1. Мне кажется в этом причина.

Уважаемый автор, собрал по вашей схеме используя
BT139-600E
MOC3063
200 Ом
510 Ом
560 Ом
но появилась проблема: нагрузка работает импульсами.
Например лампа накала светится 1,5-2 раза слабее, с заметными глазу миганиями. В чем может быть причина, и как исправить?

О, мой комент удалили! Я вроде по теме спрашивал

Почему-то не работает. То есть постоянно 220В, хоть подавай 5В, хоть нет.
Я сделал не двухканальную как в примере, а одноканальную.

а можно пример с вашей схемой и internet контроллером?

собрал схему согласно принципиальной на основе одной оптопары moc 3061 и симистора bt 137 600e.
симистор так и не открылся. причину не сумел найти.

Пардон, «200 Ом резистор на входе оптопары — у тебя контроллер 3-х Вольтовый или 5 Вольтовый? Пояснений на входные сигналы нет.» Не то написал — нужно было:
Резистор между выводами 1 и 3 симистора 500к — должен быть 0,3 — 1 кОм.

Оптосимисторы МОС301х, МОС302х, МОС303х, МОС304х, МОС306х, МОС308х
Оптосимисторы принадлежат к классу оптронов и обеспечивают очень хорошую гальваническую развязку (порядка 7500 В) между управляющей цепью и нагрузкой. Эти радиоэлементы состоят из инфракрасного светодиода, соединенного посредством оптического канала с двунаправленным кремниевым симистором. Последний может быть дополнен отпирающей схемой, срабатывающей при переходе через нуль питающего напряжения.
Эти радиоэлементы особенно незаменимы при управлении более мощными симисторами, например при реализации реле высокого напряжения или большой мощности. Подобные оптопары были задуманы для осуществления связи между логическими схемами с малыми уровнями напряжений и нагрузкой, питаемой сетевым напряжением 220 В. Оптосимистор может размещаться в малогабаритном DIP-корпусе с шестью выводами, его цоколевка и внутренняя структура показаны на рис.1.

В таблице приведена классификация оптосимисторов по величине прямого тока, через светодиод IFT, открывающего прибор, и максимального прямого повторяющегося напряжения, выдерживаемого симистором на выходе ( VDRM). В таблице отмечено также и свойство симистора открываться при переходе через нуль напряжения питания. Для снижения помех предпочтительнее использовать симисторы, открывающиеся при переходе через нуль напряжения питания.

Что касается элементов с обнаружением нуля напряжения питания, то их выходной каскад срабатывает при превышении напряжением питания некоторого порога, обычно это 5 В (максимум 20 В). Серии МОС301х и МОС302х чаще используются с резистивной нагрузкой или в случаях, когда напряжение питания нагрузки должно отключаться. Когда симистор находится в проводящем состоянии, максимальное падение напряжения на его выводах обычно равно 1,8В (максимум 3В) при токе до 100мА. Ток удержания (IH), поддерживающий проводимость выходного каскада оптосимистора, равен 100мкА, каким бы он ни был (отрицательным или положительным) за полупериод питающего напряжения.
Ток утечки выходного каскада в закрытом состоянии (ID) варьируется в зависимости от модели оптосимистора. Для оптосимисторов с обнаружением нуля ток утечки может достигать 0,5мА, если светодиод находится под напряжением (протекает ток IF).
У инфракрасного светодиода обратный ток утечки равен 0,05 мкА (максимум 100 мкА), и максимальное падение прямого напряжения 1,5В для всех моделей оптосимисторов. Максимально допустимое обратное напряжение светодиода 3 вольта для моделей МОС301х, МОС302х и МОС303х и 6 вольт для моделей МОС304х. МОСЗО6х и МОСЗО8х.
Предельно допустимые характеристики
Максимально допустимый ток через светодиод в непрерывном режиме — не более 60ма.
Максимальный импульсный ток в проводящем состоянии переключателя выходного каскада — не более 1 А.
Полная рассеиваемая мощность оптосимистора не должна превышать 250 мВт (максимум 120 мВт для светодиода и 150 мВт для выходного каскада при Т — 25˚С).

На рис.2 а-д представлены различные схемы типичных применений оптосимисторов, отличающиеся друг от друга характером нагрузки и способами подключения нагрузки и питания.
Сопротивление Rd
Расчет сопротивления этого резистора зависит от минимального прямого тока инфракрасного светодиода, гарантирующего отпирание симистора. Следовательно, Rd = (+V — 1,5) / IF.
Например, для схемы транзисторного управления оптосимистором c напряжением питания +5 В (рис.3) и напряжением на открытом транзисторе (Uкэ нас), равном 0.3 В, +V будет 4,7 В, и IF должен находиться в диапазоне между 15 и 50 ма для МОС3041. Следует принять IF — 20 мА с учетом снижения эффективности светодиода в тече¬ние срока службы (запас 5 мА), целиком обеспечивая работу оптопары с постепенным ослаблением силы тока. Таким образом, имеем:
Rв = (4,7 — 1,5) / 0,02 = 160 Ом.
Следует подобрать стандартное значение сопротивления, то есть 150 Ом для МОС3041 и сопротивление 100 Ом для МОС3020.
Сопротивление R
Резистор R необязательно включать, когда нагрузка чисто резистивная. Однако, если симистор защищен цепочкой RР — CР, чаще всего называемой искрогасящей, резистор R позволяет ограничить ток через управляющий электрод оптосимистора. Действительно, в случае индуктивной нагрузки проходящий через симистор ток и напряжение, приложенное к схеме, находятся в противофазе. Так как симистор перестает быть проводником, когда ток проходит через нуль, конденсатор защитной цепочки СР может разряжаться через оптосимистор. Тогда резистор R ограничивает этот ток разряда. Минимальное значение его сопротивления зависит от максимального напряжения конденсатора и максимально допустимого для оптосимистора тока, поэтому для напряжения питания 220 В:
Rmin = 220 В х 1,41 / 1А — 311 Ом.
С другой стороны, слишком большая величина R может привести к нарушению работы. Поэтому принимают R — 330 или 390 Ом.
Сопротивление RG
Резистор RG необходим только тогда, когда входное сопротивление управляющего электрода очень велико, то есть в случае чувствительного симистора. Значение резистора RG может быть в диапазоне от 100 до 500 Ом.
Резисторы RG и R вводят задержку отпирания симистора, которая будет тем значительнее, чем выше сопротивления этих резисторов. Цепочка Ra — Сa
Чтобы ограничить скорость изменения напряжения dV/dt на выходе оптосимистора, необходима snubber-цепочка (рис.2 г).
Выбор значения сопротивления резистора Ra зависит от чувствительности симистора и напряжения Va, начиная с которого симистор должен срабатывать. Таким образом, имеем:
R + Ra = Va / IG.
Для симистора с управляющим током IG = 25мА и напряжением отпирания Va = 20В получим: R + Ra = 20 / 0,025 — 800 Ом
или: Ra = 800 — 330 = 470 Ом.
Для того чтобы переключение симистора происходило быстро, должно быть выполнено следующее условие: dV / dt = 311 / Ra х Ca.
Для МОС3020 максимальное значение dV / dt — 10 В/мкс.
Таким образом: Сa = 311 / (470 х 107) = 66 нФ.
Выбираем: Сa = 68 нФ.
Замечание.
Что касается snubber-цепочки, то экспериментальные значения, как правило, предпочтительнее теоретических расчетов.
Защита
Настоятельно рекомендуется защищать симистор и оптосимистор при работе на индуктивную нагрузку или при часто воздействующих на сеть помехах.
Для симистора искрогасящая RC-цепочка просто необходима. Для оптосимистора с обнаружением нуля, такой как МОС3041, — желательна. Сопротивление резистора R следует увеличить с 27 Ом до 330 Ом (за исключением случая, когда управляемый симистор малочувствительный).
Если используется модель без обнаружения нуля, то snubber-цепочка Ra — Сa обязательна.

1) 15А без радиатора? — ну Серега ты жжешь!

2) Таб (металлический) для соединения с радиатором 1-го и 2-го симистора на фото готовой платы касаются друг друга, а как насчет К.З.? Поясняю, если один симистор полностью открыт/закрыт, а второй полуоткрыт, при касании табов обоим симисторам — КИРДЫК!(Дай бог, чтоб пожара не было, а то умный дом можно будет потом лопатой откидывать :))

3) По даташиту на оптосимистор резисторы должны быть 390 Ом (к симистору). Надо смотреть типовую схему включения, там же все пояснено! 200 Ом резистор на входе оптопары — у тебя контроллер 3-х Вольтовый или 5 Вольтовый? Пояснений на входные сигналы нет. Входной ток оптопары в среднем должен быть средним. Будет малым — ненадежно будет открываться симистор, большим — или перегрузка и выход деталей или срок жизни устройства будет зависеть от качества комплектующих и запаса их прочности.

Прошу прощения за задержку со статьёй… Она готова, только не хватает иллюстраций и схем ��

Ссылка на основную публикацию
Удельное сопротивление и электропроводимость формулы и объяснение
Тест Расчет сопротивления проводника Тест Расчет сопротивления проводника. Удельное сопротивление 8 класс с ответами. Тест включает 10 заданий. 1. От...
Тюнинг салона ВАЗ 2114 с фото и видео
Схема электрооборудования ВАЗ-2115 ВАЗ-2114 и ВАЗ-2113 В Ладе Схема электрооборудования ВАЗ-2115 – блок-фары; – моторедукторы очистителей фар*; – противотуманные фары*;...
Тюнинг старой газели – модернизация салона, подвески и двигателя, варианты доработки внешнего вида и
Тюнинг ГАЗ-3302 – модернизация газели своими руками Все про Авто ГАЗ-3302 (Газель) – один из самых востребованных автомобилей в нашей...
Удельные веса и плотности жидких топлив
Коэффициент перевода кг в литры дизельное топливо Калькулятор перевода литров дизельного топлива в килограммы (кг) Сколько килограмм в литре дизельного...
Adblock detector