Степень сжатия, октановое число бензина, детонационная стойкость

Детонационная стойкость бензина — что это Отвечаем на вопрос

Показателем, показывающим соотношение различных составных частей в рассматриваемом товаре является детонационная стойкость бензина. Об этом рассказано в данной статье.

Понятие о детонации

Последняя возникает при самовоспламенении бензовоздушной смеси в той части, которая в наибольшей степени удалена от свечи зажигания. Ее горение носит взрывоопасный характер.

Оптимальные условия для ее протекания складываются в части камеры сгорания, в которой наблюдаются повышенная температура и большая экспозиция нахождения смеси.

Детонацию можно определить по характерным металлическим стукам, которые образуются из-за отражения ударных волн от стенок камеры сгорания и обусловленной этим вибрации цилиндров.

Детонационное сгорание бензина может наступить с большей вероятностью в случае наличия в камере сгорания нагара, а также при ухудшении состояния двигателя. Данное явление приводит к уменьшению его мощности, снижению экономических показателей, а также токсикологических показателей отработавших газов.

Свойства бензинов, обуславливающие возникновение детонации

К таковым относятся: фракционный состав, содержание серы, стабильность с физической и химической точек зрения, строение углеводородов и др.

Наибольшая детонационная стойкость характерна для ароматических углеводородов, а наименьшая — для нормальных парафиновых. Другие из них, входящие в состав бензина, занимают промежуточное положение.

Производят оценку детонационной стойкости бензина октановым числом.

Способы предотвращения детонации

Она должна предотвращаться в момент эксплуатации двигателя, тогда когда осуществляется движение автомобиля, в связи с чем возникает необходимость принятия срочных мер с целью предотвращения повреждения двигателя в наибольшей степени. Помимо этого, усилия конструкторов должны быть направлены на разработку последнего с комплексным противодействием рассматриваемому явлению.

Одним из основных способов предотвращения потенциальной детонации является выпуск бензина с детонационной стойкостью достаточно высокой.

Определение октанового числа

Выше мы определились с тем, какое число определяет детонационную стойкость бензина. Октановое число (ОЧ) определяют при помощи одноцилиндрового оборудования с динамичной степенью сжатия, применяя исследовательский или моторный методы. При его определении производится сжигание исследуемого бензина и эталонного топлива с известной искомой величиной. В состав последнего входят гептан с ОЧ=0 и изооктан с ОЧ=100.

При испытании в данное оборудование заливается бензин. При осуществлении исследований постепенно наращивается степень сжатия до тех пор, пока не появится детонация, после чего двигатель заправляется эталонным топливом с предварительным измерением детонации и фиксации степени сжатия, приведшей к ней. По объемному содержанию изооктана в смеси определяют ОЧ.

В наименовании марки бензина может присутствовать буква «И». Это свидетельствует о том, что ОЧ определялось исследовательским методом. В случае ее отсутствия использовался моторный метод. ОЧ, полученные по разным методам, несколько различаются по значениям. Поэтому октановое число для детонационной стойкости бензина должно обязательно сопровождаться указанием метода, по которому была определена его величина.

Последняя величина определяется при моторном методе при номинальных нагрузках, а при исследовательском — при неустановившихся режимах.

Помимо этих двух методов для определения ОЧ может использоваться дорожный метод. В разогретый двигатель подают смеси, в состав которых входят нормальный гептан и изооктан. Автомобиль разгоняют до максимально возможной скорости при прямой передаче и регулируют угол опережения зажигания до тех пор, пока не исчезнет детонация. После чего по этому же методу определяют установку зажигания, при которой стартует детонация. Строят базовую кривую в зависимости от градуса угла поворота коленвала, по которой и определяют ОЧ.

С целью повышения ОЧ прямогонных бензинов они подвергаются каталитическому риформингу. Насколько они возрастут, определяется жесткостью данных режимов.

Бензины термических процессов по детонационной стойкости превосходят прямогонные.

Понятие о повышении детонационной стойкости

Описанное выше свидетельствует о том, что последнюю необходимо повышать с целью продления срока службы двигателя.

Для повышения детонационной стойкости бензина используют специальные антидетонационные добавки. Октановое число увеличивается при повышении молярной массы углеводородов и степени разветвленности углеродной цепи, а также при превращении алканов в алкены, нафтены и ароматические углеводороды, имеющие одно и то же число углеродных атомов.

Способы повышения рассматриваемого показателя. Характеристика этиловых бензинов

Существуют следующие способы повышения детонационной стойкости бензинов:

  • ввод высокооктановых компонентов;
  • подбор сырья и технологии переработки;
  • введение антидетонаторов.
Читайте также:  Устройство и особенность подвески автомобилей для раллиПодвеска автомобиля

До недавнего времени основным из последних был тетраэтилсвинец (ТЭС), представляющий собой яд в виде жидкости, нерастворимый в воде, но легко растворимый в нефтепродуктах.

Однако свинец как продукт сгорания накапливается в камере сгорания, что увеличивает сжатие двигателя. Поэтому вместе с ТЭС в бензин добавляют выносители данного элемента, которые образуют летучие вещества при сгорании, удаляемые с отработавшими газами.

В качестве последних веществ могут использоваться таковые с содержанием таких галогенов как бром или хлор. Смесь выносителя с ТЭС носит название этиловой жидкости. Бензины, в которых она используется, называются этилированными. Они очень ядовиты, их использование должно сопровождаться использованием повышенных мер безопасности.

Со временем стали вводиться новые требования к экологичности двигателей, что обусловило переход на неэтилированные бензины.

Характеристика более безопасных антидетонационных добавок

Неэтилированные бензины потребовали изменить технологию производства данного товара и применть антидетонационные добавки, которые отличались бы пониженной токсичностью.

Детонационная стойкость бензина оценивается, в том числе, и по использованию в последнем нетоксиных антидетонаторов. Эффективность на уровне ТЭС показывают марганцевые вещества, которые представляют собой неядовитые жидкости. Однако они нашли ограниченное применение, поскольку снижают долговечность двигателя.

Перспективной считается добавка метилтретбутиловый эфир (МТБЭ) с физико-химическими свойствами, близкими к бензину. При его добавлении в количестве 10% к топливу октановое число возрастает на 5-6 единиц.

Для высокооктановых бензинов используют органическое вещество под названием кумол.

Помимо этого, используются высокооктановые добавки на базе одноатомных спиртов и изобутилена.

Наибольшее распространение в производстве чистого бензина нашли эфиры.

Также применяются железосодержащие органические соединения, присадки на основе марганцевой органики, на базе N-метил-анилина, депарафинизированный рафинат

Помимо этого, в бензинах вместо ТЭС может использоваться тетраметилсвинец (ТМС), который лучше испаряется и более равномерно распределяется по цилиндрам.

Из практики использования ТЭС

Автомобилисты, имеющие значительный стаж вождения, знакомы с «красными свечами». Окраска свечей в данный цвет происходила тогда, когда в низкооктановый бензин подливали вместо ТЭС с выносителями чистый антидетонатор. Это приводило к освинцовыванию данных устройств. После этого отремонтировать и восстановить свечи уже невозможно. Таким образом, детонационная стойкость бензина характеризуется не бездумным, а правильным применением специально предназначенных для этого антидетонаторов.

Этилированные бензины способствуют меньшему износу кулачков на распредвалах, по сравнению с использованием бензинов без ТЭС. Предполагают, что продукты, образующиеся в результате сгорания, попадали через масло на поверхность, что защищало ее от износа. Последний уменьшался и по отношению к другим деталям двигателя при использовании этилированных бензинов.

Другие присадки для топлива

Для торможения окислительных реакций в бензины вводят антиокислительные присадки, которые могут быть древесносмольными, представляющими собой смесь фенолов с маслами, параоксифениламин и ФЧ-16, представляющий собой смесь фенолов.

Для предотвращения обледенения карбюратора применяют антиобледенительные присадки. В качестве них используют соединения, растворяющие воду и образующие низкозамерзающие смеси с ней, а также образующие оболочку на ледяных частицах, препятствующие росту и оседанию их на карбюраторных стенках.

Для удаления отложений могут использоваться различные моющие присадки.

Факторы, влияющие на рассматриваемый показатель

Детонационная стойкость бензина оценивается не только по октановому числу. На нее оказывают влияние различные факторы.

Детонация усиливается при повышении степени сжатия двигателя, увеличении диаметра цилиндра, использовании поршней и головок из чугуна. Эти факторы относятся к конструктивным.

К эксплуатационным свойствам, усиливающим детонацию, относятся увеличение нагрузки двигателя при константной частоте вращения коленвала, либо уменьшение частоты вращения при константной нагрузке при увеличении угла опережения зажигания, уменьшении влажности воздуха, увеличении слоя нагара в камере сгорания и температуры сгорания охлаждающей жидкости.

Помимо этого, детонация обусловлена влиянием физических и химических факторов. Последние обусловлены тем, что топливо способно образовывать перекисные соединения, которые, при достижении определенной концентрации, способствуют образованию данного явления. Распад данных соединений протекает достаточно быстро, при этом выделяется теплота и образуется «холодное» пламя, которое, при распространении, насыщает смесь продуктами распадами перекисных веществ. В них содержатся активные центры, благодаря которым возникает фронт горячего пламени.

Основным физическим фактором является степень сжатия двигателя. От него прямо пропорционально зависит давление и температура в камере сгорания. При достижении критических значений порция рабочей смеси воспламеняется и сгорает со скоростью взрыва.

Детонационная стойкость различных типов двигателей

Высокая детонационная стойкость автомобильного бензина характерна для легкотопливных двигателей. Она обеспечивает нормальное сгорание данных видов топлива в различных режимах эксплуатации двигателя. Процесс возникновения детонации в данном случае был рассмотрен выше.

Для обеспечения нормального рабочего цикла в дизельных двигателях, которые работают за счет самовоспламенения от сжатия рабочей смеси, детонационная стойкость топлива должна быть низкой. Для данных двигателей используется такая характеристика, как «цетановое число», которая показывает период времени от попадания топлива в цилиндр до начала осуществления его горения. Чем оно выше, тем меньше задержка, тем более спокойно осуществляется горение топливной смеси.

Читайте также:  Прогулка большой компанией на шестиместном снегоболотоходе Yamaha Viking VI — Журнал «4х4 Club»

Сортность бензинов

Помимо детонационной стойкости бензина для авиационных видов данного топлива применяется понятие сортности. Она демонстрирует, насколько изменяется мощность при работе одноцилиндрового двигателя на обогащенной смеси на исследуемом топливе, по сравнению с мощностью, развиваемой этим же двигателем на изооктане, мощность которого принята за 100 единиц сортности или 100%.

В заключение

Детонационная стойкость бензина — это параметр, с помощью которого происходит характеристика способности данного вида топлива противостоять при сжатии самовоспламенению. Он относится к важнейшим характеристикам любого топлива, в том числе, и для рассматриваемого вида. Для легкотопливных двигателей ее определяют через октановое число. С целью повышения данного показателя применяют высокооктановые присадки, вводят антидетонаторы, подбирают сырье и разрабатывают технологии его переработки.

Степень сжатия и октановое число бензина

Автомобильное топливо — легкокипящая углеводородная фракция (33–205°C) прямой нефтеперегонки. Ключевые параметры бензина — степень сжатия и октановое число. Современные автомобильные бензины маркируются обозначениями «АИ» и цифровыми индексами 80–98. В зависимости от конкретного типа двигателя используется бензин определённой марки. Разберём основные характеристики автомобильного жидкого топлива подробнее.

Степень сжатия — устойчивость к самовоспламенению

Физическое отношение суммарного объёма цилиндра в момент нахождения поршня в мёртвой точке к рабочему объёму камеры внутреннего сгорания характеризуется степенью сжатия (СЖ). Показатель описывается безразмерной величиной. Для бензиновых приводов она составляет 8–12, для дизельных — 14–18. Увеличение параметра повышает мощность, КПД мотора, а также снижает расход топлива. Однако высокие значения СЖ повышают риск самовоспламенения горючей смеси при высоком давлении. По этой причине бензин с большим показателем СЖ также должен обладать высокой детонационной стойкостью — октановым числом (ОЧ).

Октановое число — детонационная стойкость

Преждевременное сгорание бензина сопровождается характерным стуком, вызванным детонационными волнами внутри цилиндра. Подобный эффект обусловлен низким сопротивлением жидкого горючего к самовоспламенению в момент компрессии. Детонационная стойкость характеризуется октановым числом, а в качестве эталона выбрана смесь из н-гептана и изооктана. Товарные марки бензина имеют показатель ОЧ в районе 70–98, что соответствует процентному содержанию изооктана в смеси. Для повышения этого параметра в смесь вводят специальные октан-корректирующие присадки — сложные эфиры, спирты и реже этилаты тяжёлых металлов. Существует взаимосвязь между степенью сжатия и маркой бензина:

  • В случае СЖ меньше 10 используют АИ-92.
  • При СЖ 10–12 необходим АИ-95.
  • Если СЖ равен 12–14 — АИ-98.
  • При СЖ равном 14 понадобится АИ-98.

Для стандартного карбюраторного двигателя СЖ равен приблизительно 11,1. В таком случае оптимальный показатель ОЧ равен 95. Однако в некоторых гоночных типах авто используются метанол. СЖ в подобном примере достигает 15, а ОЧ варьируется от 109 до 140.

Использование низкооктанового бензина

В автомобильной инструкции указан тип двигателя и рекомендуемое горючее. Использование горючей смеси с низким ОЧ приводит к преждевременному выгоранию горючего и иногда разрушению конструкционных элементов мотора.

Важно также понимать, какая система подачи топлива применяется. Для механического (карбюраторного) типа соблюдение требований по ОЧ и СЖ обязательно. В случае автоматической, или инжекторной системы топливно-воздушная смесь корректируется электроникой. Бензиновая смесь насыщается либо обедняется до необходимых значений ОЧ, а двигатель работает нормально.

Высокое октановое число топлива

АИ-92, а также АИ-95 — наиболее применяемые марки. Если в бак залить, к примеру, 95-ый вместо рекомендуемого 92-го, серьёзных поломок не будет. Возрастёт лишь мощность в пределах 2–3%. Если же заправить авто 92-ым вместо 95-го или 98-го, то увеличится расход топлива, а мощность снизится. Современные автомобили с электронным впрыском контролируют подачу горючей смеси и кислорода и тем самым защищают двигатель от нежелательных эффектов.

Таблица зависимости степени сжатия и октанового числа

Детонационная стойкость автомобильного горючего имеет прямую взаимосвязь со степенью сжатия, которая представлена в таблице ниже.

ОЧ СЖ
72 6,8–7,0
76 7,2–7,5
80 8,0–9,0
91 9,0
92 9,1–9,2
93 9,3
95 10,5–12
98 12–14
100 Более 14

Заключение

Автомобильные бензины характеризуются двумя основными характеристиками — детонационной стойкостью и степенью сжатия. Чем выше СЖ, тем больше требуется ОЧ. Использование горючего с меньшим либо большим значением детонационной стойкости в современных авто не навредит двигателю, но повлияет на мощность и расход топлива.

Нефтянка

Всё о нефти, газе и не только

[Н3.4] Производство бензина

Описание процесса получения автомобильного бензина обычно фокусируется на разборе принципов функционирования установок риформинга, изомеризации, алкилирования… Читатель смотрит и недоумевает — зачем всё это нужно? Дело в том, что для повышения потребительских и экологических свойств топлива были разработаны стандарты и регламенты, устанавливающие строгие требования по ряду параметров. Производство современного бензина похоже на сборку головоломки по замысловатым правилам.

Читайте также:  Технические характеристики Mitsubishi Pajero 4 - расход топлива, конфигурация полного привода

Наиболее известный параметр бензина — октановое число. Оно определяет детонационную стойкость бензина, то есть его способность противостоять самопроизвольному воспламенению при сжатии. При нормальной работе двигателя пары бензина сначала сжимаются в цилиндре, после чего в нужный момент воспламеняются искрой от свечи зажигания. Чем сильнее будут сжаты пары, тем эффективнее работа двигателя. Считается, что шкалу для изменения детонационной стойкости бензина придумал американский химик Эдгар Грэхем в 1927 году, хотя его первенство оспаривалось другими учёными. В качестве нижней границы он взял характеристики нормального гептана (0 единиц), в качестве верхней — изооктана (100 единиц). Бензин с октановым числом 92 ведёт себя как смесь 8% н-гептана и 92% изооктана, а бензин с октановым числом 60 соответствует смеси 40% н-гептана и 60% изооктана.

Определение октанового числа топлива проводится на стенде, имитирующем работу одноцилиндрового двигателя внутреннего сгорания. Детонационная стойкость не является постоянным параметром, она зависит от условий измерения. Применяются два варианта: мягкий (частота вращения коленвала 600 об/мин, температура 52°С, угол опережения зажигания 13 градусов) и жёсткий (частота вращения коленвала 900 об/мин, температура 149°С, переменный угол опережения зажигания). Октановое число, измеренное по первому варианту, называется исследовательским октановым числом (ИОЧ), по второму — моторным октановым числом (МОЧ).

Отраслевое сообщество не смогло прийти к единому мнению относительно того, какой способ считать правильным. С одной стороны, моторное число точнее соответствует работе нагруженного двигателя, с другой — исследовательское обычно больше, что нравится потребителю. В России согласно ГОСТ 2084-77 для низкооктанового бензина указывалось октановое число по моторному методу (А-76), для высокооктанового — по исследовательскому (Аи-92, Аи-95). Присутствие буквы «и» в названии говорило о том, что приведено ИОЧ, отсутствие этой буквы означало МОЧ. По новым правилам (ГОСТ Р 51105–97) бензины стали называться Нормаль-80, Регуляр-92, Премиум-95, Супер-98. Бензин А-76 превратился в Нормаль-80, Аи-92 — в Регуляр-92. Аналогичный способ маркировки топлива применяется в Европе.

В США и Канаде проблему с разными методами определения октанового числа решили по-своему. В этих странах используется антидетонационный индекс (АДИ), представляющий собой среднее арифметическое из ИОЧ и МОЧ. Величина АДИ не имеет физического смысла, но достаточно удобна.

Существует множество веществ, позволяющих довести октановое число до заданного уровня, но почти все они чему-нибудь вредят (природе, здоровью людей, деталям машин). Если потенциальный вред очень высок, то использование вещества запрещается, если умеренный — то ограничивается верхний предел содержания этого вещества в готовом топливе. Например, очень легко поднять октановое число путём добавки тетраэтилсвинца, но современный техрегламент запрещает присутствие в топливе ядовитых свинцовых соединений. Также из-за ядовитости запрещено использование метилового спирта. Недороги и эффективны присадки на основе марганца и железа, но они быстро выводят из строя свечи зажигания. Высокое октановое число имеет бензол, но его пары ядовиты, поэтому содержание бензола в бензине не может превышать 1%. Сплошные ограничения! Очень похоже на рецепты здорового питания — как приготовить вкусное блюдо без соленого, перчёного, острого, жареного и копчёного.

Процесс приготовления бензина дополнительно осложняется нелинейностью воздействия добавок на октановое число смеси. Например, чистый этиловый спирт в малых дозах весьма полезен для повышения октанового числа, но когда его в смеси становится более 5%, то положительный эффект заметно снижается. Ну и в качестве «вишенки на торте» — ИОЧ и МОЧ не подчиняются правилам аддитивности, то есть октановое число смеси не соответствует среднему, рассчитанному с учётом объёмных долей компонентов. Чтобы обойти эту проблему, для расчётов применяются так называемые октановые числа смешения. Способы измерения октановых чисел смешения не найдены, они определяются методом подбора.

Кроме октанового числа, бензин нормируется по содержанию легкоиспаряющихся углеводородов. Если бензин образует недостаточно паров, то пуск холодного двигателя станет невозможен. Слишком много летучих компонентов — тоже плохо, в жаркую погоду это может привести к образованию паровых пробок в топливной системе автомобиля. Согласно Техническому регламенту, давление насыщенных паров бензина в летний период должно составлять 45-80 кПа, в зимний период — 50-100 кПа. Почти все компоненты бензина характеризуются меньшим давлением насыщенных паров, до нормы этот показатель доводится путём добавления н-бутана или изобутана. Это очень летучий углеводород. При заправке автомобиля можно наблюдать, как он в виде паров утекает из горловины бензобака, образуя в воздухе достаточно заметные переливающиеся струи. Добавление бутана влияет на итоговое октановое число, что требуется заранее учитывать.

Смешивание компонентов бензина и получение товарной продукции осуществляется на установке компаундирования. Технологии производства различных компонентов бензина будут рассмотрены в следующей статье.

Ссылка на основную публикацию
Стентирование сосудов сердца показания, видео операции, осложнения, реабилитация и отзывы, сколько ж
Сколько живут после операции стентирования сердца, дают ли инвалидность Из этой статьи вы узнаете: что такое стентирование сердца, сколько живут...
Сталь 10 — Полный марочник сталей и сплавов
Марки стали Расшифровка, виды, таблица с разъяснениями Принимаясь за создание какого-либо изделия, проектировщики разрабатывают его конструкцию, и подбирают марки сталей,...
Сталь марки 18ХГТ расшифровка, характеристики и применение, хим состав, термообработка, механические
Сталь 18ХГТ конструкционная легированная расшифровка, характеристики, ГОСТ Сталь 18ХГТ – это конструкционный легированный сплав. Добавление букв в название ее означает...
Степень окисления алюминия физические свойства и сферы использования
Окисление алюминия Алюминий и его оксид Алюминий имеет отрицательный окислительно-восстановительный потенциал (–1,66 В), а магний, его важный легирующий элемент, имеет...
Adblock detector