Солнечные батареи как это работает

Применение солнечной энергии

Ежегодно используемое нами количество полезных ископаемых равно тому количеству, которое былопроизведено природой за миллионы лет.

Эти запасы ограничены и, по мнению многих специалистов, более половина из них исчерпывается в течение одной человеческой жизни. Этот факт должен нас подвигнуть на действия, направленные на получение энергии из возобновляемых источников: воды, ветра, земли, солнца. Солнце является неисчерпаемым источником энергии. Ежегодно на землю попадает большое количество солнечного тепла, которое в 14000 раз больше всемирно-потребляемой энергии.

Наибольшим опытом использования солнечной энергии обладают богатые страны западной Европы. При помощи различных форм, финансовых стимулов, население данных стран все больше и больше инвестиций вкладывает в возобновляемые источники энергии. Больше всего солнечных коллекторов в Европе установлено в Австрии и Греции, где на 1000 жителей приходится около 300 квадратных метров солнечных коллекторов.

Где мы можем применить солнечный нагрев, и как эта система работает на практике? Проще говоря, гелиосистемы мы можем использовать везде, где нужна горячая вода, а также обогрев помещений и подогрев воды в бассейнах. Также они могут быть использованы в сельском хозяйстве и промышленности в качестве источника тепла или наоборот холода.

Основой гелиосистемы является солнечный коллектор — солнечные лучи проходят через безопасное солярное стекло с хорошей пропускной способностью и попадают на высокоэффективное селективное покрытие абсорбера. При помощи незамерзающего теплоносителя тепло передается в бак-накопитель или на теплоприемник. Гелиосистема в большинстве случаев не является единственным источником тепла, для нагрева воды в баке в качестве дополнительного источника тепла необходимы, например камин, котел или электрический ТЭН. Данные источники используются в основном в то время, когда долго нет солнца или в зимние месяцы, когда интенсивность солнечного излучения снижается.

Существует несколько типов солнечных коллекторов разных конструктивных решений. Ведущим Европейским производителем плоских термических солнечных коллекторов является компания ThermoSolar Viar. В настоящее время здесь производят более 10 типовых моделей с обозначением TS. Наиболее востребованным коллектором является тип TS300 с очень хорошим соотношением цены и производительности. Предприятие ThermoSolar является одним из не многих мировых производителей солнечных коллекторов, которые сосредотачивают в одном месте прессование коллекторных ванн, производство селективных конверсионных поверхностей, монтаж коллекторов и производство несущих конструкций. Можно сказать, что гордостью производителя является уникальный плоский вакуумный коллектор, не имеющий аналогов в мире. В отличие от трубчатого вакуумного коллектора данный тип может быть легко встроен в кровлю и фасады зданий, также он более устойчив к экстремальным погодным условиям. Укомплектованные коллекторы проходят тщательные испытания, в лабораторных условиях симулируются режимы работы направленные на контроль эксплуатационных характеристик и долговечности коллектора.

В центрально-европейских климатических условиях гелиосистемы чаще всего используются для нагрева воды, дежурного отопления зданий и нагрева воды в бассейнах. Непосредственно перед монтажом необходимо правильно выбрать схему гелиосистемы в зависимости от того, для какой цели она будет служить. Для нагрева горячей воды в семейных домах, предприятие ThermoSolar предлагает экономичные и оптимально подобранные комплекты, в остальных случаях перед монтажом необходимо разработать проект. Чаще всего коллекторы устанавливаются на южной стороне незатененной, наклонной или ровной кровли. Если такой крыши нет, коллекторы можно разместить также на фасадах зданий или на других подходящих поверхностях.

Преимущество инсталляции в новых домах состоит в том, что там не делается стандартное распределение горячей воды, а существует возможность дополнительных ответвлений, которые ведут, например к стиральной или к посудомоечной машине.

Использование нагретой воды в стиральной или посудомоечной машине является другим вариантом увеличения рентабельности гелиосистемы, это позволяет одновременно сократить объем вложенных средств. В реальных условиях за срок службы солнечной установки, средства, вложенные в ее реализацию, многократно окупаются. Гелиосистемы — это не только модная тенденция новых городов, в деревнях можно просто установить коллекторы как на старые, так и на новые постройки.

В области Коберовы в Чешской республике был реализован проект строительства 13 энергетически-пассивных домов. Они разработаны так, чтобы потребление энергии при эксплуатации было значительно ниже, чем в обычных семейных домах: — «Составной частью каждого дома является воздухонагревательный отопительный блок, который обеспечивает отопление и проветривание объекта. Интегрированный накопитель тепла, имеющийся в каждом объекте, обеспечивает аккумуляцию энергии из солярных панелей, а также от камина. Одновременно он оборудован электрокотлом и энергия, полученная от коллекторов, камина или электрических ТЭНов передается в воздухотехнический блок или идет на горячее водоснабжение. В наших домах солнечные коллекторы используются, прежде всего, для того, чтобы покрывать потребление энергии для нагрева воды в среднем на 60-70 процентов».

Читайте также:  Гальваническая развязка 1

На примере таких семейных домов видно, что правильно выбранные и установленные солнечные коллекторы являются также эстетической деталью и практически незаметны в окружающей среде. Если вы планируете использовать гелиосистему для обогрева помещений и нагрева воды в бассейне — коллекторное поле должно быть больше и без проекта здесь уже не обойтись. Гелиосистемы для обогрева бассейнов часто выгодно комбинируются с подогревом горячей воды или дежурным отоплением помещений.

Энергия солнца огромна, и люди должны научиться ею правильно пользоваться. Если вы сделаете выбор в пользу данного чистого источника энергии — почувствуете это на своих кошельках, например в виде низких платежей за энергию. В тоже время вы будете способствовать тому, что в атмосферу будет попадать меньше вредных выбросов и окружающая среда будет оздоравливаться. Необходимо помнить, что 1 коллектор в течение одного года способен на 300 или 500 кг уменьшить количество углекислого газа в атмосфере, которое бы возникло при нагреве воды при помощи углеводородных видов топлива.

Преимущество использования энергии Солнца на Земле

Энергия – это жизненная кровь социально-экономического развития. Использование энергии значительно эволюционировало за последние десятилетия в том числе и от Солнца.
Практическое использование энергии Солнца может оказаться более чем достаточным, чтобы удовлетворить спрос для всех энергетических систем необходимых для жизни человека.

Доля ресурсов солнечных лучей, достигающих поверхности Земли, могла бы полностью обеспечить потребность глобального потребления если бы их можно было бы обуздать.

1 иоттаватт (10 24 Вт) энергии достигает поверхности Земли в год от Солнца, что примерно в 10 11 раз превышает спрос на первичные ресурсы в мире, но самый большой вопрос как эти ресурсы обуздать.
Для сравнения в 2018 году 20 400 TВт (20,4 х 10 12 Вт) электричества было произведено во всем мире.

Доступный солнечный ресурс

Общий спектр электромагнитных волн, излучаемых Солнцем, определяется как солнечное излучение или инсоляции света. Только небольшая часть этого излучения попадает на Землю. Солнечный свет, который попадает на поверхность Земли содержит видимый, инфракрасный и ультрафиолетовый свет. Время в пути для солнечного света от Солнца до Земли составляет примерно около 8 минут.
Доступный солнечный ресурс в различных местах нашей планеты различен. Тропические регионы предлагают лучший ресурс, чем более умеренные широты. Например, средняя мощность облучения в Европе составляет около 1000 Вт/ч на квадратный метр по сравнению с 1800 Вт/ч на Среднем Востоке. Используя сегодняшнюю технологию полупроводниковых солнечных батарей, поле площадью 500 на 500 км смогло бы произвести всю электроэнергию используемую в России. По мере того как технология будет все больше и больше доступна потенциал использования энергии солнца как главный источник низкоуглеродистой энергии будет расти.

Сейчас фотоэлектрические системы могут обеспечить 276 х 10 6 МВт/ч энергии, что эквивалентно только 1% от глобального спроса. Хотя за свой срок службы типичный фотоэлектрический модуль в солнечном климате будет производить более чем в двадцать раз больше электроэнергии, первоначально используемой для его производства.
Использование энергии солнца считается более экологичным, чем обычные способы использования источников, таких как ископаемое топливо и уголь. Солнечная энергия на сегодняшний день является крупнейшим энергетическим ресурсом на Земле.

Откуда Солнце берет энергию

На Солнце происходит термоядерная реакция. Чистая масса до и после процесса деления или слияния отрицательна; другими словами, в ядерной реакции происходит потеря массы. Эта масса не просто исчезает, а превращается в энергию. Ядерный синтез водорода в гелий – это процесс, благодаря которому солнце дает нам энергию.
Фактически Солнце каждую секунду превращает около 620 миллионов метрических тонн водорода в гелий. 99% от ядерного синтеза генерируется внутри 24% радиуса Солнца, которая течет наружу через несколько различных слоев, прежде чем уйдет как солнечный свет.

Но не волнуйтесь: по данным, у нашего светила осталось еще 6,5 миллиардов лет термоядерных процессов, прежде чем оно выключится.

174 петаватта (PВт) в виде солнечной радиации (или инсоляции – облучение поверхности) попадает в нашу атмосферу.
Почти треть из них отражается обратно в космос. Остальные, 3 850 000 эксаджоулей (1 эксаджоуль равен 277,78 ПВт∙ч (петаватт-час)) поглощаются атмосферой, облаками, океанами и сушей. Это количество энергии за час больше в 8640 раз, чем необходимо общее потребление во всем мире. По другому один час облучения поверхности нашей планеты эквивалентен мировому потреблению в течение всего года.

К сожалению, обуздать всю эту энергию от нашей звезды невозможно.

Вот некоторые другие интересные сравнения, которые помогут понять огромный потенциал энергии Солнца:

  • один год от солнечных лучей, достигающих поверхность Земли, в два раза больше всех невозобновляемых ресурсов, включая ископаемое топливо и ядерный уран.
  • солнечная энергия, которая каждую секунду попадает на Землю, эквивалентна 4 триллионам 100-ваттных лампочек.
  • энергия, которая падает на одном квадратном километре в год, эквивалентна 3 миллионам баррелей нефти.
Читайте также:  СсангЙонг Рекстон 2019 цены, комплектации, фото, новая модель, видео тест-драйв

Производство солнечной энергии

Использование энергии солнца возможно с помощью фотоэлектрических систем. Принцип работы солнечного элемента в преобразовании солнечного света непосредственно в электричество.

Когда полупроводниковые панели подвергаются действию света, они производят направленный ток. Инвертор после этого преобразовывает постоянный ток в электричество переменного тока который распределяется через электрические сети. Возможно использование постоянного тока от полупроводниковых панелей или в комбинации с различными устройствами преобразования тока.

Солнечный фотоэлемент является самым маленьким полупроводниковым устройством, которое преобразует солнечный свет в электрическую энергию. Модуль представляет собой сборку ячеек последовательно или параллельно соединенных для увеличения напряжения и/или тока. Панель-это сборка модулей на конструкции. Массив – это сборка панелей на площадке.

Солнечная энергия

Что такое солнечная энергия

Солнце – это звезда, внутри которой, в непрерывном режиме, происходят термоядерные реакции. Результатом происходящих процессов, с поверхности солнца выделяется колоссальное количество энергии, часть которой нагревает атмосферу нашей планеты.

Солнечная энергия — это источник жизни на планете Земля. Наша планета, и все живые организмы, существующие на ней, получает энергию солнца в виде солнечного света и тепла.

Солнечная энергия является источником возобновляемой и экологически чистой энергии.

Солнечная энергия как альтернативный источник энергии

Способы преобразования энергии солнца для получения различных видов энергии, используемой человеком, можно разделить по видам получаемой энергии и способам ее получения, это:

Преобразование в электрическую энергию

Путем применения фотоэлектрических элементов

Фотоэлектрические элементы используются для изготовления солнечных панелей, которые служат приемниками солнечной энергии в системах солнечных электрических станций. Принцип работы основан на получении разности потенциалов внутри фотоэлемента при попадании на него солнечного света.

Панели различаются по структуре (поликристаллические, монокристаллические, с напылением кремния), габаритным размерам и мощности.

Путем применения термоэлектрических генераторов.

  • Термоэлектрический генератор – это техническое устройство, позволяющее получать электрическую энергию из тепловой энергии. Принцип действия основан на преобразовании энергии получаемой из-за разности температур на разных частях элементов конструкции (термоэлектродвижущая сила).

Преобразование в тепловую энергию

Путем использования коллекторов различных типов и конструкций.

  • Вакуумные коллекторы — трубчатого вида и в виде плоских коллекторов.

Принцип действия — под воздействием солнечных лучей, нагревается специальная жидкость, которая при достижении определённых параметров, начинает испаряться, после чего пар передает свою энергию теплоносителю. Отдав тепловую энергию пар конденсируется и процесс повторяется.

  • Плоские коллекторы – представляют из себя каркас с теплоизоляцией и абсорбер покрытые стеклом, с патрубками для входа и выхода теплоносителя.

Принцип действия — потоки солнечного света попадают на абсорбер и нагревают его, тепло с абсорбера переходит теплоносителю.
Путем использования гелиотермальных установок.
Принцип действия основан на нагревании поверхности способной поглощать солнечные лучи. Солнечные лучи фокусируются и посредством устройства линз концентрируются, после чего направляются на принимающее устройство, где энергия солнца передается для накопления или передачи потребителю посредством теплоносителя.

Распространение в России

Солнечная энергетика получает все более широкое распространение в разных странах и на разных континентах. Россия не является исключением из этой тенденции. Причиной более широкого распространения в последние годы стало:

  • Развитие новых технологий, позволившее снизить стоимость оборудования;
  • Желание людей иметь независимый источник энергии;
  • Чистота производства получаемой энергии («зеленая энергетика»);
  • Возобновляемый источник энергии.

Потенциалом для развития солнечной энергетики обладают южные районы нашей страны – республики Кавказа, Краснодарский и Ставропольский край, южные районы Сибири и Дальнего Востока.
Районы различаются по инсоляции в течение суток и времени года, так для разных регионов поток солнечной радиации, в летний период, составляет:

По состоянию на начало 2017 года мощность работающих солнечных электростанций на территории России составляет 0,03% от мощности электростанции энергетической системы нашей страны. В цифрах – это составляет 75,2 МВт.

Солнечные электростанции работают в

  • Оренбургской области:
    «Сакмарская им. А. А. Влазнева», установленной мощностью 25 МВт;
    «Переволоцкая», установленной мощностью 5,0 МВт.
  • Республике Башкортостан:
    «Бурибаевская», установленной мощностью 20,0 МВт;
    «Бугульчанская», установленной мощностью 15,0 МВт.
  • Республике Алтай:
    «Кош-Агачская», установленной мощностью 10,0 МВт;
    «Усть-Канская», установленной мощностью 5,0 МВт.
  • Республике Хакасия:
    «Абаканская», установленной мощностью 5,2 МВт.
  • Белгородской области:
    «АльтЭнерго», установленной мощностью 0,1 МВт.
  • В Республике Крым, независимо от Единой энергетической системы страны, работает 13 солнечных электрических станций, общей мощностью 289,5 МВт.
  • Также, вне системы работает станция в Республике Саха—Якутия (1,0 МВт) и в Забайкальском крае (0,12 МВт).

В стадии разработки проекта и строительства находятся электростанции

  • В Алтайском крае, 2 станции, общей проектируемой мощностью 20,0 МВт, запуск в работу планируется в 2019 году.
  • В Астраханской области, 6 станций, общей проектируемой мощностью 90,0 МВт, запуск в работу планируется в 2017 году.
  • В Волгоградской области, 6 станций, общей проектируемой мощностью 100,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Забайкальском крае, 3 станции, общей проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Иркутской области, 1 станция, проектируемой мощностью 15,0 МВт, запуск в работу планируется в 2018 году.
  • В Липецкой области, 3 станции, общей проектируемой мощностью 45,0 МВт, запуск в работу планируется в 2017 году.
  • В Омской области, 2 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Оренбургской области, 7 станция, проектированной мощностью 260,0 МВт, запуск в работу планируется в 2017-2019 годах.
  • В Республике Башкортостан, 3 станции, проектируемой мощностью 29,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Бурятия, 5 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Дагестан, 2 станции, проектируемой мощностью 10,0 МВт, запуск в работу планируется в 2017 году.
  • В Республике Калмыкия, 4 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Самарской области, 1 станция, проектируемой мощностью 75,0 МВт, запуск в работу планируется в 2018 году.
  • В Саратовской области, 3 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Ставропольском крае, 4 станции, проектируемой мощностью 115,0 МВт, запуск в работу планируется в 2017-2019 годы.
  • В Челябинской области, 4 станции, проектируемой мощностью 60,0 МВт, запуск в работу планируется в 2017 и 2018 году.
Читайте также:  Средний танк Т-55 Энциклопедия военной техники

Общая проектируемая мощность солнечных электрических станций, находящихся в стадии разработки и строительства, составляет – 1079,0 МВт.
Термоэлектрические генераторы, гелиоколлекторы и гелиотермальные установки также широко применяются на промышленных предприятиях и в повседневной жизни. Вариант и способ использования выбирает каждый для себя сам.

Количество технических устройств, использующих энергию солнца для выработки электрической и тепловой энергий, а также количество строящихся солнечных электрических станций, их мощность, говорят сами за себя — в России альтернативным источникам энергии быть и развиваться.

Пригодна ли для обычного дома

  • Для бытового использования гелиоэнергетика — перспективный вид энергетики.
  • В качестве источника электрической энергии, для жилых домов, используют солнечные электрические станции, которые выпускают промышленные предприятия в России и за ее пределами. Установки выпускаются различной мощности и комплектации.
  • Использование теплового насоса — обеспечит жилой дом горячей водой, подогреет воду в бассейне, нагреет теплоноситель в системе отопления или воздух внутри помещений.
  • Гелиоколлекторы — можно использовать в системах отопления домов и горячего водоснабжения. Более эффективны, в этом случае, вакуумные трубчатые коллекторы.

Плюсы и минусы

К достоинствам солнечной энергетики относятся:

  • Экологическая безопасность установок;
  • Неисчерпаемость источника энергии в далекой перспективе;
  • Низкая себестоимость получаемой энергии;
  • Доступность производства энергии;
  • Хорошие перспективы развития отрасли, обусловленные развитием технологий и производством новых материалов с улучшенными характеристиками.

Недостатками являются:

  • Прямая зависимость количества вырабатываемой энергии от погодные условия, времени суток и времени года;
  • Сезонность работы, которую определяет географическое расположение;
  • Низкий КПД;
  • Высокая стоимость оборудования.

Перспективы

Перспективы развития данной отрасли энергетики обусловлены положительными и отрицательными свойствами присущим гелиоустановкам. Если с достоинствами все понятно, то с недостатками предстоит работать инженерам и разработчикам оборудования и материалов.

Факторами, вызывающими здоровый оптимизм, по развитию альтернативных источников энергии, являются:

  1. Запасы традиционных источников энергии постоянно сокращаются, что обуславливает рост их стоимости.
  2. Технический прогресс постоянно идет, появляются новые материалы и технологии, и что, в свою очередь, приводит к уменьшению стоимости оборудования и повышению КПД установок.
  3. Политика государства в энергетической области направлена на развитие альтернативной энергетики, о чем были приняты постановления правительства и соответствующие программы, как то:
  • В 2009 году — «Основные направления государственной политики в сфере повышения энергетической эффективностиэлектроэнергетики на основе использования возобновляемых источников энергии на период до 2020 года».
  • Помощь государства при реализации программы Международной финансовой корпорации (IFC) по развитию возобновляемых источников энергии.
  • Создание, на законодательном уровне, экономических рычагов, способствующих развитию «зеленой» энергетики, выражающихся в установлении льготных тарифов, финансовой помощи при строительстве, налоговые льготы и компенсация части кредитных затрат на строительство.

Россия – большая страна, поэтому для успешного развития всех отраслей промышленности и комфортного проживания людей во всех регионах, необходимо наличие запасов различных видов энергии. В связи с этим альтернативные источники все более прочно входят в общую систему энергоснабжения страны, обеспечивая самые отдаленные города и поселки источниками электричества и тепла.

Ссылка на основную публикацию
Советская реклама рекламный фильм «Новый легковой автомобиль ГАЗ-24» (1970 год) Александр Сальников
На заправке в поселке Белый Ключ произошел хлопок газа пострадали двое По данным ТАСС, хлопок газа произошел 1 июля на...
Смартфоны с лучшими GPS-модулями Tablets24
Лучшие смартфоны с GPS ТОП 10, обзор моделей, рейтинг Телефонов с модулями GPS много – ими оснащены бюджетники и флагманы,...
Смена стандартного кода аварийного отключения тревоги Starline A93
Как отключить сигнализацию Старлайн А91 без брелка с помощью кнопки Валет Охранная система на машине – полезная вещь. Современные сигнализации...
Советы по зимней эксплуатации и хранению Аккумулятора Аккумуляторный дом
Какая должна быть плотность электролита в аккумуляторе автомобиля Аккумуляторная батарея для автомобиля выступает жизненно важным элементом, обеспечивающим электромеханическое функционирование транспортного...
Adblock detector