Солнечная батарея для автодома

Что можно запитать от 100Вт солнечной панели — Блог REENERGO

Что может работать от одной 100Вт солнечной панели? Этот вопрос мы часто слышим от новичков в мире солнечной энергетики и от тех, кто только собирается в неё погрузиться.
Обычно, когда мы проектируем солнечную электростанцию, то мы начинаем со списка электроприборов, которые должны работать от солнечной электростанции, т.е. составляем список нагрузок. Исходя из этого подбирается количество и мощность солнечных панелей, а также сопутствующее оборудование. Сейчас мы будем действовать от обратного. Посмотрим что мы сможем запитать от одной солнечной панели мощностью 100 ватт.

“100Вт” ≠ 100Вт

Когда мы говорим, что солнечная панель имеет мощность 100Вт, то такую мощность она выдаёт при интенсивности солнечного излучения 1000Вт/м². Обычно такая интенсивность бывает летом в ясную погоду, когда солнце находится в зените. Естественно, производители не бегают каждый раз на улицу с солнечной панелью, они тестируют их мощность при определённых лабораторных условиях – STC (Standart Test Conditions) или так называемых “стандартных тестовых условиях”. Эти условия следующие:

  • интенсивность солнечного излучения 1000 Вт/м²
  • температура воздуха 25°С
  • солнечные лучи падают перпендикулярно на солнечную панель
  • скорость ветра равна нулю
  • масса воздуха 1.5
  • некоторые другие критерии

Таким образом, реальная выходная мощность солнечных панелей может варьироваться в зависимости внешних погодных условий. При расчётах обычно мы занижаем мощность солнечных панелей, основываясь на разнице между лабораторными испытаниями и вашей реальной установкой.
Если 12В солнечная панель имеет мощность 100Вт, то имеется ввиду мгновенная мощность. Если проведём измерения при условиях STC, то мы должны получить выходное напряжение

18В и ток 5.55А. Мощность – это произведение напряжения на ток (P=V*I), поэтому 18В·5.55А = 100Вт.

Здесь даже можно провести небольшую аналогию с автомобилем, мощность – это как скорость автомобиля. Если автомобиль едет с постоянной скоростью 100км/ч, то за 1 час он проедет 100км. Тоже самое с солнечной панелью. Чтобы определить какое количество энергии будет произведено за определённое время, нужно количество ватт умножить на количество часов. Например, за 1 час будет сгенерирован 100Вт x 1ч = 100ватт·часов = 100Вт·ч .

Если рассмотреть всё это на конкретной солнечной панели, то можно взять солнечную панель Delta SM 100-12P оптимальное рабочее напряжение 18.1В (Ump) и оптимальный рабочий ток 5.52А. 18.1В х 5.52А = 99.91Вт (100Вт) .

Что можно записать от 100Вт солнечной панели?

Теперь нам нужно выяснить, сколько часов нужно подставлять в уравнение, чтобы определить, сколько энергии будет генерироваться солнечной панелью за день. А сколько часов реального солнечного излучения равносильно стандартным тестовым условиям? Как мы отметили выше, интенсивность солнечного излучения близка или идентичная тестовым, в полдень, когда солнце находится в зените, т.е в период 12.00-13.00.

Сколько часов солнечная панель будет подвергаться солнечному излучению в течение дня?

Интенсивность солнечного излучения в течение дня

Количество часов солнечного света, равное полудню, называется инсоляцией или эффективным солнечным часом (ESH, Effective Solar Hours).
Вы прекрасно знаете, что несмотря на то, что солнце встаёт в 8 утра, оно не такое яркое как в полдень. Поэтому, если продолжительность солнечного дня составляет 10-12 часов, то нельзя просто умножить 100Вт х 10часов (или на 12). Так, между 8 и 9 утра интенсивность солнца приблизительно наполовину меньше, чем в полдень. Поэтому 1 утренний час приблизительной равен половине эффективного солнечного часа. Кроме того, зимой световой день значительно короче чем летом, еще и интенсивность излучения слабее – т.е. количество эффективных солнечных часов в течение года сильно варьируется.

Читайте также:  Рено Дастер 2021 (2) СКОРО В РОССИИ! Фото, цены, комплектации и дата выхода

Влияние местоположения на выработку энергии

Ваше местоположение также определяет количество эффективных солнечных часов. Например, для Казани количество эффективных солнечных часов составляет 3.5ч, для Москвы 3ч., для Краснодара 3.7ч – это усреднённые значения в день в течение года по данным с сайта NREL PVWatts Calculator.

Расчёт в PVWatts Calculator для Казани

Учитываем использование в течение года

Возвращаясь к рассматриваемому вопросу о том, что можно запитать от 100Вт панели, теперь нужно рассмотреть будут ли вы её использовать круглый год или только в определённый период, например, в период весна-осень. Если вы хотите использовать в течение всего года, то нужно рассмотреть самый худший вариант, т.е. самый худший месяц в году с точки зрения солнечной энергетики.

Для этого можно воспользоваться еще один полезным сервисом, он чем-то похож на NREL PVWatts Calculator, но здесь сразу отображается оптимальный угол наклона солнечных панелей для вашего местоположения. Данный сервис полностью на английском языке, но там всё интуитивно понятно и можно самостоятельно разобраться что к чему за пару минут.

Для начала из выпадающего списка нужно выбрать страну (Russian Federation), затем город (Kazan’) и потом направление солнечных панелей, в нашем случае выбираем юг (Facing directly South).

Выбираем страну, город, направление

Далее система предлагает выбрать угол наклона солнечной панели среди нескольких предложенных вариантов:

  • Вертикальная поверхность
  • Оптимальный среднегодовой угол
  • Изменение угла наклона в течение года
  • Максимальная зимняя выработка
  • Максимальная летняя выработка
  • Плоская поверхность

Выбираем угол наклона солнечных панелей

Поскольку мы размещаем одну 100Вт панель, то давайте разместим её под “зимним” углом. Для Казани самый худший месяц году – это декабрь, в котором в среднем за день только 1.41 эффективных солнечных часа. Получается в декабре за один день 100Вт будет вырабатывать 141Вт·ч. Только нужно помнить, что это усреднённое значение для всего месяца, поэтому в какие-то дни выработка будет больше, в какие меньше, а в какие-то может даже будет близко к этому значению, но не каждый день. В среднем, если мы просуммируем выработку за все дни в декабре и разделим на количество дней, то получим значение близкое к 141Вт·ч.

Учитываем потери

Ничто в реально работающей системе не обходится без потерь, поэтому нужно учитывать падение напряжения на проводах, пыль и грязь на поверхности солнечных панелей, потери на контроллере заряда и прочее. Поэтому мы умножим 141Вт·ч х 0,7 = 98.7Вт·ч (30% фактор потерь). Это всё равно, что потерять 1/3 вырабытываемой мощности, но это реальность и от нёё никуда не деться. В итоге в декабре мы получили прибл. 100Вт·ч/день. Что теперь можно сделать с этой мощностью?

Подбираем контроллер заряда и аккумулятора для хранения энергии

Для начала, вырабатываемую энергию нужно где-то хранить, чтобы можно было использовать её позже, когда она понадобится. Для хранения используется аккумуляторная батарея. Перед этим нам нужен контроллер заряда, который регулирует процесс подачей энергии в аккумуляторную батарею глубокого разряда, которую можно заряжать и разряжать на регулярной основе. В качестве контроллера заряда идеально подойдёт EPSOLAR 1012LS – это простой, но надёжный ШИМ-контроллер заряда с номинальным напряжением 12В и и максимальным током заряда до 10А.

Какой ёмкости аккумулятор нужно использовать? Итак у нас есть 100Вт·ч которыми мы заряжаем 12В аккумулятор. Поскольку ватты делённые на вольты равны амперам, то получаем 100Вт·ч : 12В

8А·ч . Несмотря на то, что используем аккумуляторы глубокого разряда, они всё равно не любят разряда более чем на 50% (самый оптимальный вариант – это разряд не более чем на треть). Тогда оптимальный вариант аккумулятора для зимнего времени 8А·ч х 2 = 16А·ч.
Количество энергии, которую может хранить аккумулятор меняется в зависимости от температуры. Так, запасённая энергия при 0°С на 15% меньше, чем при 20°С, поэтому умножаем 16А·ч х 1.15 = 18.4 А·ч .

Читайте также:  Несколько секретов, чтобы пластиковые окна не сифонили зимой

Подбираем инвертор

Далее нам нужно использовать инвертор, для преобразования постоянного напряжения от аккумулятора в привычные нам 220В. Оптимальный вариант для маленьких система это компактный 300Вт инвертор ИС2-12-300. Возьмём коэффициент потерь на преобразование 5%. Тогда 18.4 А·ч / 0.95 = 19.4 А·ч ., округлим полученное значение до 19А·ч.

Рассчитываем время автономной работы

Солнце светит не каждый день, поэтому нам нужно учитывать пасмурные дни, дождь снег. Нам нужно для себя рассчитать в течение какого количество дней без солнца мы хотели бы иметь запас энергии. Это называется днями автономии. Скажем так, нам нужно 2 дня автономии, тогда 19А·ч. х 2 = 38А·ч, получается, совместно с 100Вт солнечной панелью мы должны использовать аккумулятор ёмкостью

40А·ч. Можно чуть больше, можно чуть меньше.

Хорошим выбором является аккумулятор Delta GEL 12-33 – гелевый аккумулятор ёмкостью 33А·ч, оснащён цифровым индикатором напряжения, уровня заряда, а также количества отработанных дней. Под крышкой аккумулятора имеются дополнительный контейнеры со специализированным раствором, долив которого позволяет продлить срок службы батареи на 15-30%. Также не плохим выбором будет AGM аккумулятор ВОСТОК СК-1233 ёмкостью также 33А·ч.

Теперь мы можем подумать, что делать с вырабатываемой и запасённой мощностью. Итак, зимой у нас есть 100Вт*ч запасённой мощности. Их хватило бы на:

  • На питание 4-х LED ламп мощностью 5 Вт в течение в часов, или
  • На 2 часа работы ноутбука со средним потреблением 50Вт*ч, или
  • На просмотр в течение

1.5 часов телевизора, или

  • 15-20 полностью зарядить смартфон
  • Это всё мы рассчитали для самого “плохого” зимнего месяца, в летнее время выработка энергии будет гораздо больше и соответственно, нужно будет использовать более ёмкий аккумулятор.

    Думаем алгоритм расчёта вам понятен и при необходимости вы сможете самостоятельно рассчитать выработку энергии как с другим номиналом солнечной панели, так и для другого времени года.

    Добавить комментарий Отменить ответ

    Добро пожаловать в блог

    Вы попали в блог компании REENERGO. Здесь мы стараемся регулярно публиковать полезные и интересные новости и статьи из области альтернативной энергетики.

    Li-ion Аккумуляторы для Дома

    Аккумуляторные батареи NEOSUN HOME ESS 5.7 кВт-ч

    Модуль литий-ионного аккумулятора для домашнего использования со сроком службы более 20 лет. Обеспечивает резервное питание во время отключений электроэнергии или стихийных бедствий в составе сетевой или гибридной энергосистемы, и даже позволяет получить полную автономию в комплекте с солнечной или ветровой электростанцией. Компактный и просто масштабируемый до 36кВт-ч, в привлекательным белым дизайне, он отлично впишется в интерьер и не займет много места.

    NEOSUN HOME ESS также может поставляться в комплекте с гибридным инвертором в таком же привлекательном белом дизайне.

    Встроенная BMS регулирует заряд каждой отдельной ячейки независимо от остальных, тем самым обеспечивает срок службы более 6000 циклов и глубину разряда 90% (DoD). Вместе с привлекательным дизайном это отличный выбор для любой домашней солнечной электростанции.

    Особенности Li-ion Аккумуляторов

    NEOSUN Home ESS – это литий-ионный аккумулятор нового поколения для дома и малого бизнеса. Модуль АКБ позволяет накапливать электроэнергию, генерируемую солнцем или ветром, и обеспечивает надежное энергоснабжение в часы, когда солнце нет или в случае аварийного отключения сети. Компактный и масштабируемый, он может работать практически с любой маркой гибридных инверторов.

    Дооолгий срок службы

    Срок службы свинцово-кислотных аккумуляторов сильно зависит от уровня разряда, который не должен превышать 50%. В то время как литий-ионные батареи практически не зависят от уровня разряда и их можно спокойно разряжать до 90%. Вместе со встроенной системой BMS это обеспечивает срок службы литий-ионных аккумуляторов в 20 лет и более.

    Количество циклов разрядки-зарядки

    В то время как у свинцово-кислотных аккумуляторов срок службы составляет около 1000 циклов, литий-ионные батарей с BMS показывают в среднем от 6000 до 8000 циклов. Для вашей СЭС это снова означает больший срок службы.

    Меньше места под батареи

    Высокая плотность энергии является одним из главных преимуществ технологии литий-ионных аккумуляторов и позволяет им занимать в разы меньше места. К тому же литий очень легкий металл, особенно по сравнению с тяжелым свинцом. Это означает, что Li-ion батареи, как правило, более чем в четыре раза легче, чем их свинцовые аналоги.

    Аккумуляторные батареи

    В автономных, гибридных и резервных системах

    В комплекс систем автономного и резервного электроснабжения входят в основном свинцово-кислотные аккумуляторы.

    Какую функцию выполняют аккумуляторы в станции электроснабжения?

    В принципе, электрическое питание потребителей небольшой мощности (до 100Вт) обеспечивается подключением напрямую к таким источникам питания, как солнечная батарея или ветроэлектрическая установка, а потребителей с повышенной мощностью достаточно напрямую подключить к бензогенератору либо дизелю.

    Но в этих случаях, неравномерная подача тока и различная его величина, подаваемого тока от источника питания к его потребителю, являются большим недостатком. Техника и бытовые приборы просто перестают работать в условиях облачности для солнечной батареи или при снижении скорости ветра, в условиях эксплуатации ветроэлектрической установки.

    Поэтому, аккумуляторные батареи для солнечной системы применяются в автономных установках электроснабжения для поддержания постоянного напряжения и сохранения электрического тока, вырабатываемого энергоустановкой. Ведь перепады напряжения и несоответствие норм этой величины, являются причиной многих неисправностей бытовой техники, электронного оборудования, люминесцентных ламп и других приборов, и могут привести к её поломке.

    Так, выходное напряжение, при работе солнечной батареи, имеет различные показания (солнечная панель с номинальным напряжением в 12 В, вырабатывает напряжение от 0 В до 21 В). Таким образом, аккумулятор с буферным режимом работы, является неотъемлемой частью в использовании ветрогенератора либо фотоэлектрической системы.

    Прямое назначение аккумуляторных батарей для солнечной системы заключается в накоплении электрической энергии, также, они предназначены для уравновешивания выходного напряжения. Электроэнергия, которая вырабатывается источниками энергоснабжения, имеет свойство накапливаться в аккумуляторах на протяжении довольно долгого периода времени (от суток до нескольких месяцев), а накопленная энергия в случае необходимости, передается потребителю. Главным преимуществом этого процесса является возможность осуществлять питание потребителя, мощностью, во много раз превышающей, мощность солнечного генератора, дизеля, бензогенератора или ветроэлектрической установки.

    С какой целью применяют АБ в системах резервного электроснабжения?

    Принцип действия резервного электроснабжения основан на работе блока бесперебойного питания (в большинстве, он представлен в виде инвертора, совмещенного с устройством для подзарядки АКБ от сети, включая в себя систему контроля наличия тока в сети), а наличие АБ обеспечивает подачу электроэнергии в случае отсутствия напряжения в сети. Аккумуляторная батарея в этом случае заряжается непосредственно от сети.

    Применение такой системы является жизнеобеспечивающим устройством в частном доме, для функционирования систем отопления с энергозависимыми современными газовыми котлами. Использование такого оборудования бесперебойного электроснабжения даст возможность не замерзнуть в аварийной ситуации.

    Аккумуляторные батареи для солнечной системы широко применяются в установках, требующих увеличения мощности для потребителей которым энергосети ограничили подключаемую мощность. Такие установки дают возможность накапливать электроэнергию от сети обычной мощности, а на выходе обеспечивать кратковременную отдачу мощности значительно больше установленной.

    Системы резервного электроснабжения, зачастую, оснащены герметичными свинцово-кислотными аккумуляторами, имеющими новейшую технологию работы AGM. Такой вид АБ отличается высоким сроком службы при использовании буферного режима и способен с легкостью поставлять ток высокой мощности на протяжении небольшого времени. Герметичные АБ являются самым оптимальным вариантом использования их в домашних условиях. Применение стартерных и негерметичных батарей, из-за выделения различных газов, требует постоянного притока свежего воздуха и поддержания определённой температуры.

    Нет времени разбираться? Оставьте свой номер телефона, мы перезвоним и подробно проконсультируем.

    Ссылка на основную публикацию
    Советская реклама рекламный фильм «Новый легковой автомобиль ГАЗ-24» (1970 год) Александр Сальников
    На заправке в поселке Белый Ключ произошел хлопок газа пострадали двое По данным ТАСС, хлопок газа произошел 1 июля на...
    Смартфоны с лучшими GPS-модулями Tablets24
    Лучшие смартфоны с GPS ТОП 10, обзор моделей, рейтинг Телефонов с модулями GPS много – ими оснащены бюджетники и флагманы,...
    Смена стандартного кода аварийного отключения тревоги Starline A93
    Как отключить сигнализацию Старлайн А91 без брелка с помощью кнопки Валет Охранная система на машине – полезная вещь. Современные сигнализации...
    Советы по зимней эксплуатации и хранению Аккумулятора Аккумуляторный дом
    Какая должна быть плотность электролита в аккумуляторе автомобиля Аккумуляторная батарея для автомобиля выступает жизненно важным элементом, обеспечивающим электромеханическое функционирование транспортного...
    Adblock detector